Evolutionary patterns in early tetrapods. II. Differing constraints on available character space among clades.

نویسندگان

  • Peter J Wagner
  • Marcello Ruta
  • Michael I Coates
چکیده

Radiations of large clades often accompany rapid morphological diversification. Evolutionary biologists debate the impact of external restrictions imposed by ecology, and intrinsic constraints imposed by development and genetics, on the rate at which morphological innovations are gained. These issues are particularly interesting for groups such as tetrapods, which evolved novel body plans relative to their piscine ancestors and which also invaded new ecosystems following terrestrialization. Prior studies have addressed these issues by looking at either ranges of morphological variation or rates of character change. Here, we address a related but distinct issue: the numbers of characters that freely vary within a clade. We modify techniques similar to those used by ecologists to infer species richnesses to estimate the number of potentially varying characters given the distributions of changes implied by a model phylogeny. Our results suggest both increasing constraints/restrictions and episodes of 'character release' (i.e. increasing the number of potentially varying characters). In particular, we show that stem lissamphibians had a restricted character space relative to that of stem amniotes, and that stem amniotes both had restrictions on some parts of character space but also invaded new character space that had been unavailable to stem tetrapods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic Stability, Tree Shape, and Character Compatibility: A Case Study Using Early Tetrapods.

Phylogenetic tree shape varies as the evolutionary processes affecting a clade change over time. In this study, we examined an empirical phylogeny of fossil tetrapods during several time intervals, and studied how temporal constraints manifested in patterns of tree imbalance and character change. The results indicate that the impact of temporal constraints on tree shape is minimal and highlight...

متن کامل

The morphological state space revisited: what do phylogenetic patterns in homoplasy tell us about the number of possible character states?

Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same characte...

متن کامل

Trophic convergence drives morphological convergence in marine tetrapods

Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of...

متن کامل

Biogeography of Triassic tetrapods: evidence for provincialism and driven sympatric cladogenesis in the early evolution of modern tetrapod lineages.

Triassic tetrapods are of key importance in understanding their evolutionary history, because several tetrapod clades, including most of their modern lineages, first appeared or experienced their initial evolutionary radiation during this Period. In order to test previous palaeobiogeographical hypotheses of Triassic tetrapod faunas, tree reconciliation analyses (TRA) were performed with the aim...

متن کامل

The morphological state space revisited: what do phylogenetic patterns in homoplasy tell us about the number of possible character states?

Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 273 1598  شماره 

صفحات  -

تاریخ انتشار 2006